The S-adic Pisot Conjecture on Two Letters

نویسنده

  • VALÉRIE BERTHÉ
چکیده

We prove an extension of the well-known Pisot substitution conjecture to the S-adic symbolic setting on two letters. The proof relies on the use of Rauzy fractals and on the fact that strong coincidences hold in this framework.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometry, Dynamics, and Arithmetic of S-adic Shifts

This paper studies geometric and spectral properties of S-adic shifts and their relation to continued fraction algorithms. Pure discrete spectrum for S-adic shifts and tiling properties of associated Rauzy fractals are established under a generalized Pisot assumption together with a geometric coincidence condition. These general results extend the scope of the Pisot substitution conjecture to t...

متن کامل

Geometric Models of Pisot Substitutions and Non-commutative Arithmetic

Unimodular Substitutions on 2 letters. Conjecture: the dynamical system associated with a primitive substitution on 2 letters, with matrix in SL(2,Z), is measurably isomorphic to a circle rotation. There is a very convenient criterium, due to B.Host: Definition: the substitution σ has strong coincidence if there exists n and k such that σ(0) and σ(1) have same letter of index k, and the 2 prefi...

متن کامل

On alpha-adic expansions in Pisot bases

We study α-adic expansions of numbers, that is to say, left infinite representations of numbers in the positional numeration system with the base α, where α is an algebraic conjugate of a Pisot number β. Based on a result of Bertrand and Schmidt, we prove that a number belongs to Q(α) if and only if it has an eventually periodic α-expansion. Then we consider α-adic expansions of elements of the...

متن کامل

6 On alpha - adic expansions in Pisot bases 1

We study α-adic expansions of numbers in an extension field, that is to say, left infinite representations of numbers in the positional numeration system with the base α, where α is an algebraic conjugate of a Pisot number β. Based on a result of Bertrand and Schmidt, we prove that a number belongs to Q(α) if and only if it has an eventually periodic α-expansion. Then we consider α-adic expansi...

متن کامل

Behavior of $R$-groups for $p$-adic inner forms of quasi-split special unitary groups

‎We study $R$-groups for $p$-adic inner forms of quasi-split special unitary groups‎. ‎We prove Arthur's conjecture‎, ‎the isomorphism between the Knapp-Stein $R$-group and the Langlands-Arthur $R$-group‎, ‎for quasi-split special unitary groups and their inner forms‎. ‎Furthermore‎, ‎we investigate the invariance of the Knapp-Stein $R$-group within $L$-packets and between inner forms‎. ‎This w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015